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We show how the compound matrix method can be extended to give eigenfunctions as
well as eigenvalues to bifurcation problems in non-linear elasticity. The non-trivial bound-
ary conditions create some difficulties and we find that sixth order systems for elasticity
problems will require a shooting method for two functions of two unknown parameters
over and above the calculations required for comparable problems in fluids.
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1. Introduction

In the companion paper [1] it was shown how the compound matrix method could be extended to give eigenfunctions as
well as eigenvalues for fourth order problems in solid mechanics and in particular bifurcation problems in non-linear elas-
ticity. The method had previously been established for fourth order fluid mechanics problems by Ng and Reid [2] and Strau-
ghan and Walker [3]. To extend the methods of [2,3] to solid mechanics problems we essentially had to modify the approach
to the boundary conditions. In [1] we also gave a different proof that the compound matrix eigenfunction equations will in
fact give a solution to the original problem. Ng and Reid [4] have considered the sixth order case for fluids and we again find
that a different approach to the boundary conditions is required for problems in solid mechanics. In this paper we show how
the proofs given in [1] can be extended to sixth order problems. This is the general case for bifurcation problems in uncon-
strained elasticity where the incremental equations give three simultaneous equations involving the second derivatives of
the three components of the incremental displacements. See Ogden [5], for example. For incompressible materials the prob-
lem formulation is slightly different. We have three incremental equilibrium equations involving the second derivatives of
the three incremental displacements but these equations also involve the first derivative of the incremental (arbitrary
hydrostatic) pressure. To compensate for this we have an additional first order equation that arises from the incompressibil-
ity condition (the trace of the incremental displacement gradient tensor will be zero). In most, if not all, cases the incom-
pressibility condition can be used to eliminate one of the displacements leaving us with three equations for the two
. All rights reserved.
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remaining displacements and the pressure. Typically this will result in one third order equation, one second order and a first
order equation for the hydrostatic incremental pressure. Sometimes it is possible to eliminate the hydrostatic pressure and
in these cases we are often left with higher order equations for one or two displacement components. Ogden [5] has some
examples of this type of problem. The starting point that we adopt can therefore be used for bifurcation problems in uncon-
strained non-linear elasticity but will require some minor and obvious modifications for incompressible problems.

In Section 2 we briefly describe the basic compound matrix method [4] for such a system of three simultaneous second
order equations with three first order boundary conditions applied at two points. We then apply the eigenfunction method
described in [1–4]. First we give a direct proof that the solution to the eigenfunction equation is also a solution of the original
problem. We then show that the boundary conditions at one end of the range are automatically satisfied. At the opposite end
of the range one unknown incremental displacement (an unknown dependent variable) can be chosen to normalise the solu-
tion, since we are dealing with a homogeneous problem. We show that we have to determine the initial values of the two
other unknown variables to ensure that the remaining three boundary conditions are satisfied. We use Newton’s method to
do this.

Following this general analysis we look at a specific non-trivial example taken from [6]. This allows us to compare exact
solutions with the compound matrix method and one other numerical approach.

2. Compound matrix method

We start by giving a brief description of the compound matrix method to determine an unknown parameter (eigenvalue)
described by a sixth order system. A more detailed derivation of the equations for the fourth order case can be found in [1].
We remark here that our generalised eigenvalue problem can eventually be regarded as solving det(A(k)) = 0 for the param-
eter k. In our problem all of the entries in the matrix A will be non-linear functions of the parameter. The compound matrix
method avoids the calculation of the matrix A so the derivation of the corresponding eigenvector is not straightforward. Here
we consider three second order equations for f(x), g(x) and h(x) in the form
f 00 ¼ a1f þ a2f 0 þ a3g þ a4g0 þ a5hþ a6h0; ð1Þ
g00 ¼ b1f þ b2f 0 þ b3g þ b4g0 þ b5hþ b6h0; ð2Þ
h00 ¼ c1f þ c2f 0 þ c3g þ c4g0 þ c5hþ c6h0; ð3Þ
where the prime denotes differentiation with respect to x and the coefficients ai, bi and ci, i = 1, . . .,6, will depend on the
parameter k, say, that we are looking for and in general on x. We also have boundary conditions
a1f 0 þ a2f þ a3g þ a4h ¼ 0; x ¼ a; ð4Þ
b1g0 þ b2f þ b3g þ b4h ¼ 0; x ¼ a; ð5Þ
c1h0 þ c2f þ c3g þ c4h ¼ 0; x ¼ a ð6Þ
and
p1f 0 þ p2f þ p3g þ p4h ¼ 0; x ¼ b; ð7Þ
q1g0 þ q2f þ q3g þ q4h ¼ 0; x ¼ b; ð8Þ
r1h0 þ r2f þ r3g þ r4h ¼ 0; x ¼ b: ð9Þ
The coefficients in the boundary conditions will also depend on the parameter k, as will a and b.
We suppose that, in principle, Eqs. (1)–(3) are solved three times with three linearly independent initial conditions (at

x = a) which ensure that the boundary conditions (4)–(6) are satisfied. The three solutions thus obtained are labelled fi, gi

and hi, i = 1, 2, 3. The full solution can then be written
f ¼ C1f 1 þ C2f 2 þ C3f 3;

g ¼ C1g1 þ C2g2 þ C3g3;

h ¼ C1h1 þ C2h2 þ C3h3
;

ð10Þ
where C1, C2 and C3 arbitrary constants.
We now introduce twenty new compound matrix variables /i(x), i = 1, . . .,20, defined by 3 � 3 determinants. If we intro-

duce the notation
ðu; v;wÞ ¼
u1 u2 u3

v1 v2 v3

w1 w2 w3

�������
�������; ð11Þ
then the compound matrix variables are given in the Appendix A (35). We now differentiate (35) and use (1)–(3) with f, g and
h replaced with f1, etc. as required, to obtain the compound matrix differential equations which are also listed explicitly in
Appendix A (36).
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Now using the initial conditions (4)–(6), arbitrarily normalising the solution by setting /6(a) = 1 and assuming that
a1(a) 6¼ 0, b1(a) 6¼ 0 and c1(a) 6¼ 0 we have the initial conditions (Appendix A (37)) for the compound matrix variables /i.
We note that when one or more of a1, b1,c1 is zero at x = a we can still find suitable initial conditions.

It remains to ensure that the boundary conditions at x = b are satisfied. We take the solutions (10) and substitute them
into the boundary conditions (7)–(9). We then require the coefficient matrix for the constants C1, C2, C3 to be singular for the
existence of non-trivial solutions. This then leads to the requirement that a 3 � 3 determinant is zero. This 3 � 3 determinant
can be written in terms of /i’s and setting this to be zero gives our target condition (Appendix A (38)).

3. Compound matrix eigenfunction

Now suppose that we have found a critical value of our parameter k so that (36) with (37) integrate to give (38) at x = b.
We can then arrange to obtain values of /i(x) for any x 2 (a,b). If we differentiate the formal solution (10) we have
f 0 ¼ C1f 1 0 þ C2f 2 0 þ C3f 3 0;

g0 ¼ C1g1 0 þ C2g2 0 þ C3g3 0;

h0 ¼ C1h1 0 þ C2h2 0 þ C3h3 0
:

ð12Þ
Now solving (10) for the constants C1, C2 and C3 in terms of f, g, h and fi, etc., then substituting these expressions for the con-
stants back into (12) we have
/6f 0 ¼ /12f þ /3g � /1h;

/6g0 ¼ �/17f þ /8g � /5h;

/6h0 ¼ �/19f � /10g þ /7h;

ð13Þ
having multiplied by /6 which we assume is non-zero throughout the range x 2 (a,b). We recall that we arbitrarily set
/6(a) = 1. Eqs. (13) are then the equations that we use to determine f, g and h along with suitable initial conditions for
f(a), g(a) and h(a) that are yet to be found.

If we consider (13) at x = a we can substitute the initial conditions for the /i’s from (37) and we see that the initial con-
ditions (4)–(6) are automatically satisfied. Thus we are free to impose any initial conditions on f(a), g(a) and h(a). To normal-
ise the solution we set
f ðaÞ ¼ 1:
As we shall see below we must choose particular values for g(a) and h(a) in order that the three remaining boundary con-
ditions (7)–(9) are satisfied.

We shall first prove that a solution to (13) with initial conditions f(a) = 1 and g(a) = ga, h(a) = ha is also a solution to the
original problem (1)–(3). We shall focus attention on the equation for f but the other equations can be dealt with in a similar
way. Unfortunately some of the intermediate results require rather large expressions. The bulky algebraic manipulations
were mainly done with Maple.

First we differentiate (13)1 and we then use Eqs. (36) to substitute for the /i derivatives and (13) to substitute for the
derivatives of f, g and h to give
/2
6f 00 ¼ ½�/1/19 � /3/17 þ ð/6a2 þ /14 þ /19a5 þ /12a1 þ /13 � /17a3Þ/6 � /12ð/8 þ /7Þ�f

þ ½/1/10 � /7/3 þ ð/4 þ a1/3 þ a4/6 þ /8a3 � /10a5Þ/6�g
þ ½/1/8 þ /3/5 þ ð/5a3 þ /6a6 þ /7a5 � /2 � /1a1Þ/6�h: ð14Þ
Next we subtract (/6)2 times the right-hand side of (1) from both sides of (14) to get
/2
6L1ðf ; g;hÞ ¼ ð/1/19 þ /3/17 � /6ð/13 þ /14Þ þ /12ð/8 þ /7ÞÞf þ ð/3/7 � /1/10 � /6/4Þg þ ð/6/2 � /1/8 � /3/5Þh;

ð15Þ
where L1(f,g,h) is the differential equation (1) and we have again used (13). We now recognise from (35) that we have the
following identities:
/6/13 � /1/19 � /7/12 � 0; /6/14 � /3/17 � /8/12 � 0; ð16Þ
/3/7 � /1/10 � /6/4 � 0; /6/2 � /1/8 � /3/5 � 0: ð17Þ
Hence the right-hand side of (15) is identically zero and the original Eq. (1) is satisfied. In a very similar way we can show
that the other two equilibrium Eqs. (2) and (3) are also satisfied. See Ng and Reid [4] for a general discussion of identities
arising from a sixth order system.

We shall now assume that the initial conditions g(a) = ga, h(a) = ha have been chosen so that the boundary conditions (8)
and (9) at x = b are satisfied. It remains to be shown that the final boundary condition (7) is also satisfied. This is an arbitrary
choice; we just need to assume any two of the boundary conditions are satisfied (with a suitable choice of ga and ha) and we
can then prove that the third one is also satisfied. To do this we first consider (8) and write



D.M. Haughton / Journal of Computational Physics 227 (2008) 8960–8967 8963
/6ðq1g0 þ q2f þ q3g þ q4hÞ ¼ q1ð�/17f þ /8g � /5hÞ þ /6ðq2f þ q3g þ q4hÞ ¼ 0; x ¼ b; ð18Þ
having used (13) and so
ð/6q2 � /17q1Þf þ ð/8q1 þ /6q3Þg þ ð/6q4 � /5q1Þh ¼ 0: ð19Þ
Similarly from (9) we have
ð/6r2 � /19r1Þf þ ð/6r3 � /10r1Þg þ ð/6r4 þ /7r1Þh ¼ 0: ð20Þ
Now we consider the left-hand side of (7) and we show that it is necessarily zero. Let w be given by
w ¼ /6ðp1f 0 þ p2f þ p3g þ p4hÞ ¼ ðp1/12 þ p2/6Þf þ ðp1/3 þ p3/6Þg þ ðp4/6 � p1/1Þh; ð21Þ
having used (13)1. Now we solve Eqs. (19) and (20) for g(b) and h(b) in terms of f(b) and substitute into the right-hand side of
(21). After a little rearranging and making use of the identities (16) and (17) and the further identities given in Appendix B
(39)–(46), together with the target condition (38) allows us to show that w is identically zero.

To summarise, the method for determining f, g and h is to choose a value for g(a) = ga and h(a) = ha with f(a) = 1, then inte-
grate equations (13) to x = b. We then adjust the value of (ga, ha) to ensure that any two of (7)–(9) are satisfied. It follows from
the above that the final boundary condition at x = b will also hold. From (13) the boundary conditions (4)–(6) will be satisfied
and so we have a solution to the original problem.

4. Example: An elastic tube under axial compression

The purpose of this section is to verify that the compound matrix method does work and to compare the results it gives
with one other possible numerical approach. The example that we consider is taken from [6] and has an exact solution in
terms of Bessel functions. The special case of a zero mode number where the problem reduces to one of fourth order was
considered as an example in [1].

We suppose that the cylindrical tube is composed of a compressible Neo-Hookean material with a strain-energy function
of the specific form
W ¼ lðI1 � 3Þ=2� ðjþ l=3Þ logðJÞ � ð2=3l� jÞðJ � 1Þ; ð22Þ

where I1 ¼ k2

1 þ k2
2 þ k2

3 and J = k1k2k3 in terms of the principal stretches ki, i = 1, . . .,3. We take the shear modulus l = 1, to nor-
malise the equations. The bulk modulus for a very compressible material is taken to be j = 5. The undeformed tube has a
length to outer radius ratio L/B = 7 with external and internal radii B = 1 and A = 2/3. There is also an associated integer mode
number m that we shall take as m > 0 for the moment. In this case the incremental equilibrium equations can be written
f 00 þ f 0

r
� ð208kþ 441r2 þ 48m2 þ 96þ 1911kr2Þ

16r2ð6þ 13kÞ f þmð3þ 13kÞ
rð6þ 13kÞ g0 �mð13kþ 9Þ

r2ð6þ 13kÞ g þ
7ð3þ 13kÞ
kð6þ 13kÞ h0 ¼ 0; ð23Þ

g00 �mð3þ 13kÞ
3r

f 0 �mð13kþ 9Þ
3r2 f þ g0

r
� ð96m2 þ 1911kr2 þ 441r2 þ 208m2kþ 48Þ

48r2 g � 7mð3þ 13kÞ
3rk

h ¼ 0; ð24Þ

h00 � 7ð3þ 13kÞ
3k

f 0 � 7ð3þ 13kÞ
3rk

f � 7mð3þ 13kÞ
3rk

g þ h0

r
� ð441k2r2 þ 1911k3r2 þ 48k2m2 þ 10192kr2 þ 2352r2Þ

48k2r2
h ¼ 0;

ð25Þ
where r is the deformed radial coordinate, with solution
7k1k2rf ðrÞ ¼ ð7k2Imþ1ðk̂1Þk1r þ k2kmImðk̂1ÞÞC1

þ ð7k1Imþ1ðk̂2Þk2r þ k1kmImðk̂2ÞÞC2

þ ð7k2Kmþ1ðk̂1Þk1r � k2kmKmðk̂1ÞÞC3 ð26Þ
þ ð7k1Kmþ1ðk̂2Þk2r � k1kmKmðk̂2ÞÞC4

þ 7k1k2C5Imðk̂1Þ � 7k1k2C6Kmðk̂1Þ;
7kmk1k2rgðrÞ ¼ �C1m2Imðk̂1Þk2k2 � C2m2Imðk̂2Þk2k1

þ C3m2Kmðk̂1Þk2k2 þ C4m2Kmðk̂2Þk2k1

þ ð�49k2
1k2Imþ1ðk̂1Þr � 7kk1k2mImðk̂1ÞÞC5 ð27Þ

þ ð�49k2
1k2Kmþ1ðk̂1Þr þ 7kk1k2mKmðk̂1ÞÞC6;

16ðk1k2ð3þ 13kÞÞhðrÞ ¼ ð�169k2k
4 � 9k2k

2 � 78k2k
3ÞImðk̂1ÞC1

þ ð�96k1k2
2 � 208k1k2

2kþ 9k1k
2 þ 39k1k

3ÞImðk̂2ÞC2 ð28Þ
þ ð9k2k

2 þ 78k2k
3 þ 169k 2k4ÞKmðk̂1ÞC3

þ ð96k1k2
2 þ 208k1k2

2k� 9k1k
2 � 39k1k

3ÞKmðk̂2ÞC4;
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where C1, . . .,C6 are constants, Im and Km are modified Bessel functions of the first and second kind. The parameters k1 and k2

are given by
Table 1
Solution

k
f(b)
g(a)
g(b)
h(a)
h(b)

k
f(b)
g(a)
g(b)
h(a)
h(b)
k1 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 13k

p
=4 ð29Þ
and
k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9k2 þ 39k3 þ 48þ 208k

16ð6þ 13Þk

s
ð30Þ
with
k̂1 ¼ 7
k1r
k
; k̂2 ¼ 7

k2r
k
: ð31Þ
The boundary conditions at both r = 2k/3 and r = k are
f 0 þ 13kf
rð6þ 13kÞ þ

13kmg
rð6þ 13kÞ þ

91h
6þ 13k

¼ 0; ð32Þ

g0 �mf
r
� g

r
¼ 0; ð33Þ

h0 � 7
f
k
¼ 0: ð34Þ
Although this problem admits an exact solution in terms of Bessel functions we still have to evaluate the zero’s of a 6 � 6
determinant in order to find the bifurcation parameter k (for a given mode number m). Having found k we compute the
6 � 6 coefficient matrix and find the eigenvector corresponding to the smallest eigenvalue (which, ideally, will be zero)
for the constants Ci. Since we do not have a simple numerical evaluation of the exact results we cannot be sure that they
will be anymore accurate than either of the two other methods that we consider. For this reason we simply present the real
solutions in Tables 1 and 2. We want to compare the results obtained using the compound matrix method outlined above
with the exact solution but also with numerical results obtained using the determinantal method which is described in
[1]. Briefly, this method starts with the formal solution for f(x), g(x) and h(x) in the form (10). We substitute these solutions
directly into the boundary conditions (7)–(9) to obtain three homogeneous equations for the constants C1, C2 and C3. For non-
trivial solutions we then set the appropriate 3 � 3 determinant to be zero. This determines the critical value for k. We then
take the 3 � 3 coefficient matrix and determine its eigenvalues and eigenvectors. At least one eigenvalue will be close to zero
and we take the corresponding eigenvector, suitably normalised, to give C1, C2, C3 and hence f(x), g(x) and h(x). However, the
above example exposes some of the problems associated with this determinantal approach. (See, for example, Wilkinson [7]
for a discussion of similar problems.) In this case the 3 � 3 determinant that we evaluate is a nice function of the parameter k
with a simple root. However, when we take the 3 � 3 matrix evaluated at the approximate parameter value we find that, in
some circumstances, the matrix has two eigenvalues close to zero. These two eigenvalues have both a small real and imag-
inary part (the numerical method we used to determine the eigenvalues does not assume that we must have conjugate
pairs). The two corresponding eigenvectors have both real and imaginary parts. However, the original problem is purely real
and so we have to regard the imaginary parts of the required eigenvector as an unavoidable error. For some examples (but
not those given here) we find that the erroneous imaginary parts can be of the same order of magnitude as the real solution.
obtained from the exact solution, the determinantal method and the compound matrix method: mode m = 1 and f(a) = 1

Exact Compound Determinantal

0.590316973329 0.590316973329 0.590317005992
0.932386153975 0.932385845764 0.932386198960
�0.126080114832 �0.126080061147 �0.126080119712
�1.946762092791E�02 �1.946757130263E�02 �1.946761388208E�02
�0.718819869939 �0.718819400911 �0.718819887913

0.582312626377 0.582312215646 0.582312679521

0.382951941167 0.382951941681 0.382951920416
�0.691662544161 �0.692161630205 �0.691662772000
�6.704159604713E�02 �6.704204974500E�02 �6.704158810140E�02
�6.471979872763E�03 �6.476481438066E�03 �6.471961693906E�03
�0.658031129079 �0.658028674414 �0.658031117884
�0.413781587358 �0.414074065853 �0.413781678107



Table 2
Solution obtained from the exact solution, the determinantal method and the compound matrix method: mode m = 10 and f(a) = 1

Exact Compound Determinantal

k 0.332747216821 0.332747216821 0.332747958779
f(b) 4.81157839011 4.81157677414 4.81162422188
g(a) �0.439841029508 �0.439840851607 �0.439842114712
g(b) 0.430575090880 0.430574915442 0.430583172698
h(a) �0.586045605367 �0.586045248303 �0.586045387638
h(b) 3.08973725606 3.08973625616 3.08977136024

k 0.277506389733 0.277506389809 0.277506308940
f(b) �0.120372102060 �0.120667879065 �0.120382807079
g(a) �0.340221101367 �0.340221624516 �0.340220916941
g(b) -1.687635736993E�02 �1.691784659709E�02 �1.687697785244E�02
h(a) �0.611359043726 �0.611358294635 �0.611359109623
h(b) �7.391841632124E�02 �7.410000870070E�02 �7.392438679504E�02
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Since the compound matrix method and the determinantal methods are very dissimilar it is difficult to make a direct
comparison. For the results presented in Table 1 we have set the tolerances for the differential equation solvers in the com-
pound matrix method to be small enough for a relative error of 5 � 10�7 and so we should expect to have around six decimal
places of accuracy. Where the compound matrix or the determinantal method give spurious imaginary parts in the solutions
they are ignored. In both of Tables 1 and 2 we find that there are two critical values of the parameter k (which gives the ratio
of deformed cylinder length to original cylinder length) for a given mode number m. We have shown the results for mode
number m = 1 since this is often the critical mode number, see [6] for details. We have also included in Table 2 the results for
m = 10 so that the effects of more severe deformations can be see. Also, although it is not obvious from the results the nature
of the calculations changes from first to second root and from mode number to mode number. Sometimes the eigenvalues
have a single value close to zero and sometimes a complex conjugate pair. In all cases we had to perform some preliminary
calculations to find suitable starting values for g(a) and h(a) for the compound matrix method.

5. Concluding remarks

As we can see from Table 1 all three methods give very similar results. In particular the exact solution and the compound
matrix method giving marginally closer results for the eigenvalue than the determinantal method, but this is reversed for the
eigenfunctions where the compound matrix method gives slightly different results to the other two methods. For most prac-
tical purposes (graphing results say) where only two or three significant figures are required all three methods give accept-
able (and equivalent) results.

Given the complexity of the compound matrix method for eigenfunctions, the amount of (numerical) work required to
obtain the solutions together with potential problems in finding good starting estimates for the Newton iteration, it is per-
haps appropriate to reconsider the basic determinantal method in a more favourable light. Certainly the basic determinantal
method for finding the eigenvalue will always suffer from the numerical evaluation of a determinant, however there are
ways round this (potential) problem. One such approach has been suggested by Amar and Goriely [8]. The eigenfunction cal-
culation based on the determinantal method requires only the evaluation of eigenvectors of a small dimension matrix and so
it is a robust calculation using well known methods. Even if this introduces erroneous imaginary parts the real solution
seems to be at least as good as the compound matrix calculation, if not better. It seems difficult to avoid the conclusion that
the determinantal method should be investigated with a view to improving the basic method for eigenvalues. The main
problem should be to find ways of removing the numerical evaluation of the determinant without imposing an unacceptable
amount of preparatory work prior to the numerical calculations. Perhaps the simplest overall approach to new problems
would be to use the compound matrix method to determine the eigenvalue and then use the determinantal method for
the eigenfunction.

Appendix A. The compound matrix equations

The compound matrix variables that we have used are given by
/1 ¼ ðf ; f 0; gÞ; /2 ¼ ðf ; f 0; g0Þ; /3 ¼ ðf ; f 0; hÞ; /4 ¼ ðf ; f 0; h
0Þ;

/5 ¼ ðf ; g; g0Þ; /6 ¼ ðf ; g; hÞ; /7 ¼ ðf ; g;h
0Þ; /8 ¼ ðf ; g0;hÞ;

/9 ¼ ðf ; g0; h
0Þ; /10 ¼ ðf ;h;h

0Þ; /11 ¼ ðf 0; g; g0Þ; /12 ¼ ðf 0; g;hÞ;
/13 ¼ ðf 0; g;h

0Þ; /14 ¼ ðf 0; g0; hÞ; /15 ¼ ðf 0; g0;h
0Þ; /16 ¼ ðf 0;h; h

0Þ;
/17 ¼ ðg; g0; hÞ; /18 ¼ ðg; g0;h

0Þ; /19 ¼ ðg; h; h
0Þ; /20 ¼ ðg0;h;h

0Þ:

ð35Þ
If we differentiate (35) and use (1)–(3) we obtain the compound matrix differential equations



8966 D.M. Haughton / Journal of Computational Physics 227 (2008) 8960–8967
/01 ¼ �/1a1 þ /5a3 þ /7a5 þ /6a6 þ /2;

/02 ¼ �/2a1 � /5a4 þ /9a5 þ /8a6 � /2b3 � /1b4 � /4b5 � /3b6;

/03 ¼ �/3a1 � /8a3 � /6a4 þ /10a5 þ /4;

/04 ¼ �/4a1 � /9a3 � /7a4 � /10a6 � /2c3 � /1c4 � /4c5 � /3c6;

/05 ¼ /1b1 � /5b3 � /7b5 � /6b6 þ /11;

/06 ¼ /7 þ /8 þ /12;

/07 ¼ /9 þ /13 þ /1c1 � /5c3 � /7c5 � /6c6;

/08 ¼ �/3b1 þ /10b5 � /8b3 � /6b4 þ /9 þ /14;

/09 ¼ �/4b1 � /9b3 � /7b4 � /10b6 þ /2c1 þ /5c4 � /9c5 � /8c6 þ /15;

/010 ¼ /3c1 þ /8c3 þ /6c4 � /10c5 þ /16;

/011 ¼ �/11a1 � /5a2 � /18a5 � /17a6 � /1b2 � /11b3 � /13b5 � /12b6;

/012 ¼ /13 þ /14 � /12a1 þ /17a3 � /19a5 � /6a2;

/013 ¼ �/13a1 � /7a2 þ /18a3 þ /19a6 � /1c2 � /11c3 � /13c5 � /12c6 þ /15;

/014 ¼ �/14a1 � /8a2 � /17a4 � /20a5 þ /3b2 � /14b3 � /12b4 þ /16b5 þ /15;

/015 ¼ �/15a1 � /9a2 � /18a4 þ /20a6 þ /4b2 � /15b3 � /13b4 � /16b6

� /2c2 þ /11c4 � /15c5 � /14c6;

/016 ¼ �/16a1 � /10a2 � /20a3 � /19a4 � /3c2 þ /14c3 þ /12c4 � /16c5;

/017 ¼ /12b1 þ /6b2 � /17b3 þ /19b5 þ /18;

/018 ¼ /13b1 þ /7b2 � /18b3 � /19b6 � /11c1 � /5c2 � /18c5 � /17c6;

/019 ¼ �/12c1 � /6c2 þ /17c3 � /19c5 þ /20;

/020 ¼ �/16b1 � /10b2 � /20b3 � /19b4 � /14c1 � /8c2 � /17c4 � /20c5:

ð36Þ
If we use the initial conditions (4)–(6) in (35) we have the initial conditions for /i at x = a
/1 ¼
a4

a1
; /2 ¼

a3b4 � a4b3

a1b1
; /3 ¼ �

a3

a1
; /4 ¼

a3c4 � a4c3

a1c1
;

/5 ¼ �
b4

b1
; /6 ¼ 1; /7 ¼ �

c4

c1
; /8 ¼ �

b3

b1
; /9 ¼

b3c4 � b4c3

b1c1
;

/10 ¼
c3

c1
; /11 ¼

a2b4 � b2a4

a1b1
; /12 ¼ �

a2

a1
; /13 ¼

a2c4 � c2a4

a1c1
;

/14 ¼
a2b3 � b2a3

a1b1
;

/15 ¼
a2ðb4c3 � b3c4Þ þ a3ðb2c4 � b4c2Þ þ a4ðb3c2 � b2c3Þ

a 1
b1c1;

/16 ¼
c2a3 � a2c3

a1c1
; /17 ¼

b2

b1
; /18 ¼

c2b4 � b2c4

b1c1
; /19 ¼ �

c2

c1
;

/20 ¼
c2b3 � b2c3

b1c1
:

ð37Þ
Finally, if we write the boundary conditions (7)–(9) in terms of the solutions (12) we require the determinant of the coef-
ficient matrix for the constants C1, C2 and C3 to have zero determinant. In terms of the /i’s this gives us the target condition
fð/2c2 þ /14c4 þ /15c1 � /11c3Þb1 � ð/4c1 þ /3c4 þ /1c3Þb2 þ ð/12c4 þ /1c2 þ /13c1Þb3 þ ð/3c2 � /12c3 þ /16c1Þb4ga1

þ fð/9c1 � /5c3 þ /8c4Þb1 þ ð/7c1 þ /6c4Þb3 þ ð/10c1 � /6c3Þb4ga2 þ fð/5c2 þ /17c4 þ /18c1Þb1 � ð/7c1 þ /6c4Þb2

þ ð/19c1 þ /6c2Þb4ga3 þ f�ð/8c2 þ /20c1 þ /17c3Þb1 þ ð/6c3 � /10c1Þb2 � ð/19c1 þ /6c2Þb3ga4 ¼ 0; x ¼ b: ð38Þ
Appendix B. Identities

Below we give a list of the identities that are required to establish the results given in Section 3. They can all be verified
simply by substituting for /i from (35).
ð/8/19 � /17/10Þ/1 þ ð/5/19 þ /7/17Þ/3 þ /12/7/8 þ /12/5/10 � /2
6/15 � 0; ð39Þ

/1/8 � /6/2 þ /3/5 � 0; ð40Þ
/1/17 � /12/5 þ /6/11 � 0; ð41Þ
/1/10 þ /6/4 � /3/7 � 0; ð42Þ
/3/19 � /6/16 þ /12/10 � 0; ð43Þ
/7/8 � /6/9 þ /5/10 � 0; ð44Þ
/7/17 � /6/18 þ /5/19 � 0; ð45Þ
/6/20 � /8/19 þ /17/10 � 0: ð46Þ
There are other independent identities involving the /i’s that we have not needed to use.
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